Maker Pro
Maker Pro

High power 2kHz DC-DC with iron toroid - success with MOSFET drivers!

P

P E Schoen

I posted awhile back about a DC-DC converter I built which took 12V from a
battery and boosted it to 320VDC for a VFD, and I was able to use it to
drive a small tractor, as shown in my YouTube video:
. It provided up to about 200-250 watts, assuming
12 volts and 15-20 amps. It's a 2HP motor so this is barely tickling it.

Since then, I made a monitor which reads voltage and current of the battery
and the DC bus, and I wanted to use it for datalogging. But when I connected
the DC-DC converter, it made a rather loud 500 Hz whine even after the
capacitors had charged, and I saw it was drawing over 5 amps while it was
previously about 2.5. Then the magic smoke came out of one of the 15 volt
TVS diodes I had from each heat sink to the battery (+).

Using a simulation, there were very high voltage spikes at the 1 uSec
deadband between the two push-pull drives. It seemed best to add TVS diodes
from the drains to GND, and also a snubber across the drains. These were
connected to the two heat sinks, and the primary leads of the transformer,
with common to battery (+).

So, I found that it had shorted, and when I removed the TVS diodes and
tested it on a bench supply, I found that it started to become unstable
above about 11 VDC, so that the problem was most likely caused by the
freshly charged battery. Investigating further, it seemed that the gate
drives were very noisy and unstable above a certain voltage. But maybe this
was not too surprising since I was using the output of an LM324 on raw
battery voltage. I also found that one of the gate wires was loose, so one
side had only one MOSFET, which explained why the current waveform showed a
difference. But that did not fix the problem.

I added the new TVS diodes (two 15V series, both sides), as well as a 10V
regulator and two gate drivers, TI UCC27321D. I have also upped the
frequency from 500 Hz to 2kHz. Now when I power the unit I can go at least
as high as 15V, and the total current draw is much less:

8.5V 0.97A
9.0V 1.02A
10.2V 1.00A
11.5V 1.10A
12.0V 1.28A
13.1V 1.38A
14.2V 1.47A
15.1V 1.55A

Previously, I had this:

12.6V 2.60A
13.1V 3.06A
13.9V 3.82A

There is still a very sharp spike at the transition, but otherwise the
voltage waveform looks very clean. I will probably add a snubber, which
seemed to help with the simulation. I have attached the ASC file if you want
to see details. I have disabled the overcurrent circuit for now. Next step
is to install this on the tractor again and see how it works. The 2 kHz is a
lot easier on the ears than 500 Hz, and it still seems well within the
capability of the iron core (silicon steel) toroid.

If you have any suggestion on "right-sizing" the snubber, or the best
placement, please let me know.

Thanks,

Paul

==========================================================================

Version 4
SHEET 1 880 680
WIRE 256 96 224 96
WIRE -208 112 -272 112
WIRE 176 112 -208 112
WIRE -272 128 -272 112
WIRE -208 128 -208 112
WIRE 256 128 256 96
WIRE 320 128 256 128
WIRE 432 128 384 128
WIRE 496 128 432 128
WIRE 560 128 496 128
WIRE 592 128 560 128
WIRE -48 144 -160 144
WIRE 0 144 -48 144
WIRE 64 144 0 144
WIRE 96 144 64 144
WIRE 496 144 496 128
WIRE -48 160 -48 144
WIRE -272 192 -432 192
WIRE 224 192 224 96
WIRE 320 208 288 208
WIRE 432 208 432 128
WIRE 432 208 384 208
WIRE 592 208 592 128
WIRE -640 240 -704 240
WIRE -576 240 -640 240
WIRE -496 240 -576 240
WIRE -448 240 -496 240
WIRE -208 240 -208 208
WIRE -208 240 -448 240
WIRE 96 240 96 224
WIRE 96 240 -208 240
WIRE 288 240 288 208
WIRE 496 240 496 208
WIRE 496 240 288 240
WIRE -432 256 -432 192
WIRE -48 256 -48 224
WIRE -48 256 -432 256
WIRE 0 256 0 208
WIRE 96 256 96 240
WIRE 288 272 288 240
WIRE 288 272 224 272
WIRE 320 272 288 272
WIRE 416 272 384 272
WIRE -320 288 -384 288
WIRE -80 288 -256 288
WIRE 496 288 496 240
WIRE -384 304 -384 288
WIRE -640 320 -640 240
WIRE -704 336 -704 240
WIRE -256 336 -256 288
WIRE 80 336 0 336
WIRE 96 336 80 336
WIRE -48 352 -48 320
WIRE 0 352 0 336
WIRE 0 352 -48 352
WIRE -496 368 -496 240
WIRE -80 368 -80 288
WIRE 96 368 -80 368
WIRE 192 368 160 368
WIRE 256 368 256 128
WIRE 320 368 256 368
WIRE 416 368 416 272
WIRE 416 368 384 368
WIRE 496 368 496 352
WIRE 496 368 416 368
WIRE 592 368 592 288
WIRE 592 368 496 368
WIRE -160 384 -160 144
WIRE 0 384 0 352
WIRE 592 384 592 368
WIRE -576 416 -576 240
WIRE 96 416 48 416
WIRE 192 416 192 368
WIRE 192 416 160 416
WIRE 736 416 192 416
WIRE 176 432 176 112
WIRE 384 432 176 432
WIRE 336 448 112 448
WIRE 416 448 336 448
WIRE 528 448 496 448
WIRE 736 448 736 416
WIRE -320 464 -320 288
WIRE -208 464 -320 464
WIRE -80 464 -80 368
WIRE -48 464 -80 464
WIRE 384 464 384 432
WIRE -80 480 -160 480
WIRE 176 480 176 432
WIRE 272 480 256 480
WIRE 320 480 272 480
WIRE 352 480 320 480
WIRE -320 496 -320 464
WIRE 48 496 48 416
WIRE 48 496 -320 496
WIRE 272 496 272 480
WIRE 528 496 528 448
WIRE 528 496 416 496
WIRE 576 496 528 496
WIRE 672 496 656 496
WIRE 336 512 336 448
WIRE 352 512 336 512
WIRE -704 528 -704 400
WIRE -640 528 -640 384
WIRE -640 528 -704 528
WIRE -576 528 -576 480
WIRE -576 528 -640 528
WIRE -544 528 -576 528
WIRE -496 528 -496 448
WIRE -496 528 -544 528
WIRE -432 528 -432 256
WIRE -432 528 -496 528
WIRE -384 528 -384 384
WIRE -384 528 -432 528
WIRE -304 528 -384 528
WIRE -256 528 -256 416
WIRE -256 528 -304 528
WIRE -208 528 -256 528
WIRE -80 528 -80 480
WIRE -80 528 -128 528
WIRE 0 528 0 480
WIRE 0 528 -80 528
WIRE 32 528 0 528
WIRE 112 528 112 448
WIRE 320 528 320 480
WIRE -304 592 -304 528
WIRE 272 592 272 576
WIRE 272 592 -304 592
WIRE 320 592 272 592
WIRE 384 592 384 528
WIRE 384 592 320 592
WIRE 736 592 736 544
WIRE 736 592 384 592
WIRE -544 608 -544 528
FLAG -544 608 0
FLAG 592 384 0
FLAG 560 128 Vout
FLAG -448 240 in
FLAG 64 144 m1
FLAG 80 336 m2
SYMBOL ind2 80 128 R0
SYMATTR InstName L1
SYMATTR Value 180µ
SYMATTR Type ind
SYMATTR SpiceLine Rser=100u
SYMBOL ind2 80 240 R0
WINDOW 0 45 35 Left 2
WINDOW 3 41 61 Left 2
SYMATTR InstName L2
SYMATTR Value 180µ
SYMATTR Type ind
SYMATTR SpiceLine Rser=100u
SYMBOL ind2 240 176 M0
SYMATTR InstName L3
SYMATTR Value 32m
SYMATTR Type ind
SYMATTR SpiceLine Rser=10m
SYMBOL nmos -208 384 R0
SYMATTR InstName M1
SYMATTR Value IRFZ44N
SYMBOL nmos -48 384 R0
SYMATTR InstName M2
SYMATTR Value IRFZ44N
SYMBOL voltage -496 352 R0
WINDOW 123 0 0 Left 2
WINDOW 39 24 132 Left 2
SYMATTR SpiceLine Rser=8m
SYMATTR InstName V1
SYMATTR Value 12
SYMBOL diode 384 288 M270
WINDOW 0 32 32 VTop 2
WINDOW 3 0 32 VBottom 2
SYMATTR InstName D2
SYMATTR Value MUR460
SYMBOL diode 320 224 R270
WINDOW 0 32 32 VTop 2
WINDOW 3 0 32 VBottom 2
SYMATTR InstName D3
SYMATTR Value MUR460
SYMBOL polcap 480 288 R0
WINDOW 3 24 64 Left 2
SYMATTR Value 1000µ
SYMATTR InstName C1
SYMATTR Description Capacitor
SYMATTR Type cap
SYMATTR SpiceLine V=400 Irms=30 Rser=0.2 Lser=0
SYMBOL res 576 192 R0
SYMATTR InstName R1
SYMATTR Value 300
SYMBOL voltage -384 288 R0
WINDOW 123 0 0 Left 2
WINDOW 39 -43 57 Left 2
WINDOW 3 148 308 Left 2
SYMATTR SpiceLine Rser=47
SYMATTR Value PULSE(0 10 0.5u 10n 10n 499u 1000u 100)
SYMATTR InstName V2
SYMBOL voltage -256 320 R0
WINDOW 123 0 0 Left 2
WINDOW 39 -43 57 Left 2
WINDOW 3 21 307 Left 2
SYMATTR SpiceLine Rser=47
SYMATTR Value PULSE(0 10 500.5u 10n 10n 499u 1000u 100)
SYMATTR InstName V3
SYMBOL diode 320 144 R270
WINDOW 0 32 32 VTop 2
WINDOW 3 0 32 VBottom 2
SYMATTR InstName D1
SYMATTR Value MUR460
SYMBOL diode 384 384 M270
WINDOW 0 32 32 VTop 2
WINDOW 3 0 32 VBottom 2
SYMATTR InstName D4
SYMATTR Value MUR460
SYMBOL polcap -592 416 R0
WINDOW 3 24 64 Left 2
SYMATTR Value 2200µ
SYMATTR InstName C2
SYMATTR Description Capacitor
SYMATTR Type cap
SYMATTR SpiceLine V=25 Irms=20 Rser=100m Lser=0
SYMBOL polcap 480 144 R0
WINDOW 3 24 64 Left 2
SYMATTR Value 1000µ
SYMATTR InstName C3
SYMATTR Description Capacitor
SYMATTR Type cap
SYMATTR SpiceLine V=400 Irms=30 Rser=0.2 Lser=0
SYMBOL cap -656 320 R0
SYMATTR InstName C5
SYMATTR Value .47µ
SYMATTR SpiceLine V=250 Rser=100u
SYMBOL schottky -688 400 R180
WINDOW 0 24 64 Left 2
WINDOW 3 24 0 Left 2
SYMATTR InstName D5
SYMATTR Value MBRB2545CT
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL res -112 512 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R3
SYMATTR Value .001
SYMBOL res 128 512 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R4
SYMATTR Value 1k
SYMBOL schottky 96 352 M90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName D6
SYMATTR Value 1N5818
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL schottky 96 400 M90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName D7
SYMATTR Value 1N5818
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL Opamps\\LT1013 384 432 R0
SYMATTR InstName U1
SYMBOL res 288 592 R180
WINDOW 0 36 76 Left 2
WINDOW 3 36 40 Left 2
SYMATTR InstName R5
SYMATTR Value 1k
SYMBOL res 160 496 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 0 56 VBottom 2
SYMATTR InstName R6
SYMATTR Value 100k
SYMBOL res 400 464 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 0 56 VBottom 2
SYMATTR InstName R7
SYMATTR Value 100k
SYMBOL res -224 112 R0
SYMATTR InstName R8
SYMATTR Value 10
SYMBOL cap -288 128 R0
SYMATTR InstName C6
SYMATTR Value .47µ
SYMATTR SpiceLine V=250 Rser=100u
SYMBOL npn 672 448 R0
SYMATTR InstName Q1
SYMATTR Value 2N3904
SYMBOL res 672 480 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R9
SYMATTR Value 1k
SYMBOL cap 304 528 R0
SYMATTR InstName C7
SYMATTR Value .47µ
SYMATTR SpiceLine V=250 Rser=100u
SYMBOL zener -64 256 R0
WINDOW 3 -132 12 Left 2
SYMATTR InstName D8
SYMATTR Value DFLZ33
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL zener -32 224 R180
WINDOW 0 24 64 Left 2
WINDOW 3 24 0 Left 2
SYMATTR InstName D9
SYMATTR Value DFLZ33
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL cap -16 144 R0
SYMATTR InstName C4
SYMATTR Value .47µ
SYMATTR SpiceLine V=250 Rser=100u
SYMBOL res -16 352 M180
WINDOW 0 36 76 Left 2
WINDOW 3 36 40 Left 2
SYMATTR InstName R2
SYMATTR Value 10
TEXT 32 88 Left 2 !K1 L1 L2 L3 0.995
TEXT -528 632 Left 2 !.tran 0 200m 0 1u startup
TEXT -352 88 Left 2 ;Primary 2x8 turns 2V/turn at 600 Hz
 
P

P E Schoen

"P E Schoen" wrote in message
I posted awhile back about a DC-DC converter I built which took 12V from a
battery and boosted it to 320VDC for a VFD, and I was able to use it to
drive a small tractor, as shown in my YouTube video:
. It provided up to about 200-250 watts,
assuming 12 volts and 15-20 amps. It's a 2HP motor so this is barely
tickling it.

[snip]

New data, 2 kHz, FWB, with output capacitors in parallel, non-doubling
10.0V 1.10A 117.8V 11.1Win
12.0V 1.27A 140.3V 15.2Win
15.0V 1.52A 176.3V 22.8Win
16.5V 1.63A 194.8V 26.9Win
20.0V 1.90A 235.0V 38.0Win
25.0V 2.32A 310.0V 58.0Win

With a 925 ohm load:
10.0V 2.35A 116.6V 27.5Win 14.7Wout
12.0V 3.26A 139.0V 39.1Win 20.9Wout
15.0V 4.00A 173.7V 60.0Win 32.6Wout
16.5V 4.36A 191.7V 71.9Win 39.7Wout
20.0V 5.20A 231.0V 104Win 57.7Wout

The efficiency is only about 55% at this power level. But if you subtract
the core losses of the unloaded operation, it's about 88%. I need a higher
power load and a higher capacity power supply than my HY3006. It's about
ready to connect to two batteries in series and have the output drive my VFD
and the utility vehicle.

I am assuming that the core loss will stay about the same and be dependent
on the applied voltage, while any additional losses will be due to resistive
losses in the MOSFETs, transformer windings, and the rectifier. I also ran
it without the output capacitors, except for a 0.01 uF metal film, and the
DC was perfectly solid. The core loss values were as follows, so the
capacitors add to the losses somewhat:

10.0V 0.99A 117.8V 9.90Win
12.0V 1.20A 140.3V 14.4Win
15.0V 1.35A 176.3V 20.3Win
16.5V n/a
20.0V 1.69A 235.0V 33.8Win
25.0V 2.00A 310.0V 53.3Win

I should probably try it also at 1kHz and 4kHz to see how much difference it
makes for core losses. I don't expect to see saturation at 1kHz 24V, since I
ran it at 500Hz 12V with no problems. My design goal is 1.5kVA or 2HP. I'm
hoping for at least 90% efficiency but I'll be happy with 85%. I also should
add two more MOSFETs in each leg which will reduce conduction losses
somewhat. And I also have a shunt of about 100A and 100mV on the common, so
that adds to the losses. But at 5 amps it's only 25mW, and at full output
with about 60 amps it's just about 4 watts, and really insignificant.

Paul
 
Top