B
BobG
Is there a 'rule of thumb' for figuring out much torque it takes to put
out xx volts and yy amps from a PMA given the gauss of the magnet and
the N turns of the coils? Should spin free open circuit, and really
stall out short circuit, and be somewhere in the middle during
operation. I guess the 'max power' point is when the load drags the
volts down to half the open circuit value? I guess the current here
would be half the short circuit current too? I want to rig the pwm
controller to not load down the pma too much under low power/low
torque/ slow spinning conditions, like from a stirling or micro hydro.
In general volts (and current) is proportional to rpm... someone got
some formulas that are a little more specific?
out xx volts and yy amps from a PMA given the gauss of the magnet and
the N turns of the coils? Should spin free open circuit, and really
stall out short circuit, and be somewhere in the middle during
operation. I guess the 'max power' point is when the load drags the
volts down to half the open circuit value? I guess the current here
would be half the short circuit current too? I want to rig the pwm
controller to not load down the pma too much under low power/low
torque/ slow spinning conditions, like from a stirling or micro hydro.
In general volts (and current) is proportional to rpm... someone got
some formulas that are a little more specific?