A
Airy R. Bean
A number of texts suggest that sampling can be modelled
by multiplying the incoming waveform by a comb of
Diracian Delta Functions.
How can this be?
1. The samples that you get are measured in the order
of single volts whereas the Diracian is infinitely tall. Surely,
if something of the order of unity were to be multiplied by
something of the order of infinity, the result would
be of the order of infinity?
How do you account for the difference? Do you have
some internal mental model where there is an invisible constant,
"Big K", perhaps, to account for the difference in scaling?
2. The area of the sampled pulse is very much less than unity,
the volts being ooo unity and the time being typically ooo usecs.
How do you handle this mentally when the area of the Diracian
is unity?
How do you come to terms with the attributes of your claimed model
being orders of magnitude different from the signals of the real world?
3. If you are one of those who claim that the sampled signal is a short
spike of zero width, then it is zero-integrable and not analysable by
any process involving Laplace Transforms.
How do you overcome the problem that your sampled signals are
not representable in the way that you claim?
by multiplying the incoming waveform by a comb of
Diracian Delta Functions.
How can this be?
1. The samples that you get are measured in the order
of single volts whereas the Diracian is infinitely tall. Surely,
if something of the order of unity were to be multiplied by
something of the order of infinity, the result would
be of the order of infinity?
How do you account for the difference? Do you have
some internal mental model where there is an invisible constant,
"Big K", perhaps, to account for the difference in scaling?
2. The area of the sampled pulse is very much less than unity,
the volts being ooo unity and the time being typically ooo usecs.
How do you handle this mentally when the area of the Diracian
is unity?
How do you come to terms with the attributes of your claimed model
being orders of magnitude different from the signals of the real world?
3. If you are one of those who claim that the sampled signal is a short
spike of zero width, then it is zero-integrable and not analysable by
any process involving Laplace Transforms.
How do you overcome the problem that your sampled signals are
not representable in the way that you claim?