If you're more comfortable programming hardware, a small CPLD might be
similarly priced and they tend to have a lot of output drive current
and I/Os. You need a JTAG cable or whatever to program the thing.
Best regards,
Spehro Pefhany
That reminds me, I did it in Verilog for my frequency counter, in FPGA
http://panteltje.com/panteltje/fpga/frequency_counter-0.2.1.bz2 ,
and used the routine from
www.opencores.org.
It has MANY more digits
//---------------------------------------------------------------------------
// Binary to BCD converter, serial implementation, 1 clock per input bit.
//
//
// Description: See description below (which suffices for IP core
// specification document.)
//
// Copyright (C) 2002 John Clayton and OPENCORES.ORG (this Verilog version)
//
// This source file may be used and distributed without restriction provided
// that this copyright statement is not removed from the file and that any
// derivative work contains the original copyright notice and the associated
// disclaimer.
//
// This source file is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
//
// This source is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
// License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this source.
// If not, download it from
http://www.opencores.org/lgpl.shtml
//
//-----------------------------------------------------------------------------
//
// Author: John Clayton
// Date : Nov. 19, 2003
// Update: Nov. 19, 2003 Copied this file from "led_display_driver.v" and
// modified it.
// Update: Nov. 24, 2003 Fixed bcd_asl function, tested module. It works!
// Update: Nov. 25, 2003 Changed bit_counter and related logic so that long
// start pulses produce correct results at the end of
// the pulse.
//
//-----------------------------------------------------------------------------
// Description:
//
// This module takes a binary input, and converts it into BCD output, with each
// binary coded decimal digit of course occupying 4-bits.
// The user can specify the number of input bits separately from the number of
// output digits. Be sure that you have specified enough output digits to
// represent the largest number you expect on the binary input, or else the
// most significant digits of the result will be cut off.
//
//-----------------------------------------------------------------------------
module binary_to_bcd (
clk_i,
ce_i,
rst_i,
start_i,
dat_binary_i,
dat_bcd_o,
done_o
);
parameter BITS_IN_PP = 32; // # of bits of binary input
parameter BCD_DIGITS_OUT_PP = 10; // # of digits of BCD output
parameter BIT_COUNT_WIDTH_PP = 5; // Width of bit counter
// I/O declarations
input clk_i; // clock signal
input ce_i; // clock enable input
input rst_i; // synchronous reset
input start_i; // initiates a conversion
input [BITS_IN_PP-1:0] dat_binary_i; // input bus
output [4*BCD_DIGITS_OUT_PP-1:0] dat_bcd_o; // output bus
output done_o; // indicates conversion is done
reg [4*BCD_DIGITS_OUT_PP-1:0] dat_bcd_o;
// Internal signal declarations
reg [BITS_IN_PP-1:0] bin_reg;
reg [4*BCD_DIGITS_OUT_PP-1:0] bcd_reg;
wire [BITS_IN_PP-1:0] bin_next;
reg [4*BCD_DIGITS_OUT_PP-1:0] bcd_next;
reg busy_bit;
reg [BIT_COUNT_WIDTH_PP-1:0] bit_count;
wire bit_count_done;
//--------------------------------------------------------------------------
// Functions & Tasks
//--------------------------------------------------------------------------
function [4*BCD_DIGITS_OUT_PP-1:0] bcd_asl;
input [4*BCD_DIGITS_OUT_PP-1:0] din;
input newbit;
integer k;
reg cin;
reg [3:0] digit;
reg [3:0] digit_less;
begin
cin = newbit;
for (k=0; k<BCD_DIGITS_OUT_PP; k=k+1)
begin
digit[3] = din[4*k+3];
digit[2] = din[4*k+2];
digit[1] = din[4*k+1];
digit[0] = din[4*k];
digit_less = digit - 5;
if (digit > 4'b0100)
begin
bcd_asl[4*k+3] = digit_less[2];
bcd_asl[4*k+2] = digit_less[1];
bcd_asl[4*k+1] = digit_less[0];
bcd_asl[4*k+0] = cin;
cin = 1'b1;
end
else
begin
bcd_asl[4*k+3] = digit[2];
bcd_asl[4*k+2] = digit[1];
bcd_asl[4*k+1] = digit[0];
bcd_asl[4*k+0] = cin;
cin = 1'b0;
end
end // end of for loop
end
endfunction
//--------------------------------------------------------------------------
// Module code
//--------------------------------------------------------------------------
// Perform proper shifting, binary ASL and BCD ASL
assign bin_next = {bin_reg,1'b0};
always @(bcd_reg or bin_reg)
begin
bcd_next <= bcd_asl(bcd_reg,bin_reg[BITS_IN_PP-1]);
end
// Busy bit, input and output registers
always @(posedge clk_i)
begin
if (rst_i)
begin
busy_bit <= 0; // Synchronous reset
dat_bcd_o <= 0;
end
else if (start_i && ~busy_bit)
begin
busy_bit <= 1;
bin_reg <= dat_binary_i;
bcd_reg <= 0;
end
else if (busy_bit && ce_i && bit_count_done && ~start_i)
begin
busy_bit <= 0;
dat_bcd_o <= bcd_next;
end
else if (busy_bit && ce_i && ~bit_count_done)
begin
bcd_reg <= bcd_next;
bin_reg <= bin_next;
end
end
assign done_o = ~busy_bit;
// Bit counter
always @(posedge clk_i)
begin
if (~busy_bit) bit_count <= 0;
else if (ce_i && ~bit_count_done) bit_count <= bit_count + 1;
end
assign bit_count_done = (bit_count == (BITS_IN_PP-1));
endmodule